Remembering Soil Conservation Practices under Limited Water Conditions

Robert Flynn, Ph.D., Extension Plant Sciences

New Mexico Western SARE Sustainable Agriculture Conference

NM STATE

A Home State Drought Monitor

U.S. Drought Monitor New Mexico

Download: 💀 📴

December 9, 2014

(Released Thursday December 11, 2014) Valid 7 a.m. EST

Statistics type:
Traditional (D0-D4, D1-D4, etc.)
Categorical (D0, D1, etc.)

Drought Condition (Percent Area):									
Week	Date	None	D0-D4	D1-D4	D2-D4	D3-D4	D4		
Current	<u>2014-12-</u> <u>09</u>	12.01	87.99	64.92	29.10	3.70	0.00		
Last Week	<u>2014-12-</u> <u>02</u>	12.01	87.99	64.92	29.10	3.70	0.00		
3 Months Ago	<u>2014-09-</u> <u>09</u>	2.63	97.37	69.85	39.85	6.97	0.00		
Start of Calendar Year	<u>2013-12-</u> <u>31</u>	0.39	99.61	75.21	32.68	3.96	0.00		
Start of Water Year	<u>2014-09-</u> <u>30</u>	16.70	83.30	62.57	30.04	8.08	0.00		
One Year Ago	<u>2013-12-</u> <u>10</u>	0.08	99.92	76.91	36.30	3.96	0.00		

Population Affected by Drought: 1,477,408

View More Statistics

Intensity:

D0 - Abnormally Dry D1 - Moderate Drought D2 - Severe Drought

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. See accompanying <u>text summary</u> for forecast statements.

Author(s):

Anthony Artusa, NOAA/NWS/NCEP/CPC

All About Discovery!

What Happens with no vegetation?

January 12, 2013, wind advisory

 Gusts were up to 65 mph in a corridor from northwest New Mexico to southeast Kansas across the Texas and Oklahoma panhandles.

Wind Erosion

2

Causes of Wind Erosion

Bare Erodible Soil

Insufficient cover

Causes of Wind Erosion

• Wind velocities exceeding threshold velocity

Effective Erosion Control Techniques

- Maintaining non-erodible soil cover
- Crop Residue Management

Effect of non-erodibles on soil loss $1.0 - \begin{bmatrix} 1.0 - \\ 0.9 - \end{bmatrix}$ SLR = EXP(-0.0438 * percent soil cover) $r^2=0.94$ Dowels

All About Discovery!

Non-Erodibles for the model

- Dowels (mimick of standing plant matter)
- Artificial clods (water stable aggregates)
- Gin Trash
- Wheat Residue
- Gravel

Effect of non-erodibles on soil loss SLR = EXP(-0.0438 * percent soil cover) 1.0 r²=0.94 0.9 Ratio Oowels 0.8-Artificial Clods 🗸 Gin Trash 0.7-Wheat Residue Gravel Loss 0.6- 0.5^{-} 0.4^{-} Maintaining 60% soil Soil cover reduces erosion to 0.3^{-} 0.2near zero

10 20 30 40 50 60 70 80 90 100

Bilbro, J.D. and D.W. Fryrear, 1994. AJ 86:550-553

 0.1^{-1}

No loss 0.0⁻

NM state

All About Discovery.

Bilbro, J.D. and D.W. Fryrear, 1994. AJ 86:550-553

All About Discovery!

20% Cover

60% Cover

rop Residue Management tanding wheat (terminated

Cotton

TP.

New Mexico State University All About Discovery?

Figure 3. Vegetation effects on reducing soil erosion. (From Nebel 1981 as used by Holechek et al. 1998)

Standing Residue – Finding the Best

Function of Height (H), Density (D), Surface Area (N), Wind Velocity (V)

Soil Loss Ratio (SLR)

SLR = exp(-28.44 x ($H^{0.729}$ x $D^{0.711}$ x $N^{0.608}$)/ $V^{2.427}$)

Since H, D, and N are similar authors substituted the plant Silhouette area (S) for H, D, & N

SLR = $exp(-28.44 \times (S^{0.6413})/V^{2.423})$

Predicted Soil Loss by Silhouette Area

Silhouette Area (S)

- Plant Height (H)
- Plant Density (D) (population per unit area)
- Surface Area (N)

Wind Erosion – Roosevelt County

All About Discover

2010 ASC Artesia

Influence of Feb Tillage on Erodibility

What about windbreaks?

Prevailing Wind Cannon AFB

Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann
W	W	W	W	S	S	S	S	S	W	W	W	W

Hobbs

					TIONDS								
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Anr
Single and	W	W	W	W	S	S	S	S	S	W	W	W	W

Roswell Jul May Aug Sep Jun Nov Jan Feb Mar Apr Oct Dec Ann S SSE SSE SSE SSE SSE SSE S SSE Ν **SSE** Ν Ν

All About Discovery

Wind Barrier Study-Comparative

- forage sorghum
- grain sorghum
- kenaf
- switchgrass
- Slabfence
- J.D. Bilbro and D.W. Fryrear, J. Soil and Water Conservation 52(6):447-452

Examples of plants used in upwind velocity study

Bilbro JD, & D.W. Fryrear 1997 J. Soil and Water Conservation 52(6):447-452

%age of upwind velocities for two periods for forage sorghum and kenaf

Density Index (DI)

- DI = ((TSSA + ELA) / PSA) x 100
 - ELA = effective leaf area (cm²)
 - PSA = Possible Silhouette Area for 1-m of row
 - TSSA = Total Stem Silhouette Area (cm²)
 - $\sum ((TD + BD)/2 \times H) \times PLTm$
 - $-\sum$ summation over rows 1-N
 - TD = average stem diameter at top
 - BD = average stem diameter at cut-off point (cm)
 - *H* = average plant height (cm)
 - PLTm = plants per meter of row

Other Issues

Declining Water Availability

Methods to Reduce Wind Erosion

- Cover a high percentage of the soil surface with grass or crop residues
- Roughen the soil surface with soil ridges or clods (as long as not a single grain structure)
- Reduce the wind velocity below the threshold velocity with wind barriers

Alternative Plants

Genus species	Lime	Fertility	Minimum	Seedling	
	Tolerance	Rqt	ppt	vigor	
Andropogon gerardii	High	Low	12	Low	
Bouteloua gracilis	Medium	Low	8	Low	
Bromus hordeaceus	High	Low	12	High	
Elymus glaucus	High	Low	16	High	
Elymus lanceolatus	Medium	Medium	8	High	
Panicum amarum	Low	Low	18	Medium	
Pleuraphis jamesii	High	Low	6	Medium	
Sporobolus cryptandrus	Medium	Low	8	Low	
Agropyron fragile	Medium	Low	6	High	
Leymus cinereus	High	High	8	Medium	
Thinopyrum ponticum	High	Medium	10	High	
Krascheninnikovia lanata*	High	Low	6	High	
Sporobolus wrightii†	High	Low	5	Medium	
*shrub					
How calinity tolorano Alea	not usually me	wood but oor	ha out hack		

low samily tolerance. Also not usually mowed but can be cut back.

On Sandy Soils

- Probability of producing sufficient crop residue to protect the soil
 - -45% for winter wheat
 - -15% for grain sorghum

Start with a Soil & Water Test

